ligand in the present compound are as follows: $\mathrm{B}(c)-\mathrm{B}(d) \quad 1.8249$ (19), $\quad \mathrm{B}(h)-\mathrm{B}(i) \quad 1.9837$ (19), $\mathrm{B}(a) \cdots \mathrm{B}(b) 3.352(2) \AA$; height of Pd above the $\mathrm{B}(a) \mathrm{B}(h) \mathrm{B}(i) \mathrm{B}(b)$ plane 0.5693 (22) \AA.

We thank the SERC for support (SAM), and the Callery Chemical Company for a generous gift of decaborane.

References

Brill, R., Dietrich, H. \& Dierks, H. (1971). Acta Cryst. B27, 2003-2018.
Fritchie, C. J. (1967). Inorg. Chem. 6, 1199-1203.
Gould, R. O. \& Smith, D. E. (1986). CADABS. Program for data reduction. Univ. of Edinburgh, Scotland.

Gould, R. O. \& Taylor, P. (1986). CALC. Program for molecular geometry calculations. Univ. of Edinburgh, Scotland.
Guggenberger, L. J. (1972). J. Am. Chem. Soc. 94, 114-119.
Klanberg, F., Wegner, P. A., Parshall, G. W. \& Muetterties, E. L. (1968). Inorg. Chem. 7, 2072-2077.

Macgregor, S. A., Yellowlees, L. J. \& Welch, A. J. (1990a). Acta Cryst. C46, 551-554.
Macgregor, S. A., Yellowlees, L. J. \& Welch, A. J. (1990b). Acta Cryst. C46, 1399-1402.
Mallinson, P. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Walker, N. G. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wynd, A. J., Macgregor, S. A., Gould, R. O., Taylor, P., Yellowlees, L. J. \& Welch, A. J. (1990). Work in progress.
Wynd, A. J. \& Welch, A. J. (1987). J. Chem. Soc. Chem. Commun. pp. 1174-1176.
Wynd, A. J., Welch, A. J. \& Parish, R. V. (1990). J. Chem. Soc. Dalton Trans. pp. 2185-2193.

Acta Cryst. (1991). C47, 516-519

Structure of Di- μ-bromo-(tetrabromo- $\left.1 \kappa^{4} \mathrm{Br}\right)$ bis(N, N-dimethylselenourea- $\left.2 \kappa^{2} \mathrm{Se}\right)$ -ditellurium(II,IV)-Acetonitrile-Methanol (2/3/1)

By H. M. K. K. Pathirana, J. H. Reibenspies, E. A. Meyers* and R. A. Zingaro
Department of Chemistry, Texas A\& M University, College Station, TX 77843, USA

(Received 30 April 1990; accepted 28 August 1990)

Abstract. $\quad 2\left[\mathrm{Te}_{2} \mathrm{Br}_{6}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Se}\right)_{2}\right] \cdot 3 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} . \mathrm{CH}_{3} \mathrm{OH}$, $M_{r}=2228.7$, monoclinic, $P 2_{1}, a=9.973$ (3), $b=$ 16.659 (6), $\quad c=16.930$ (6) $\AA, \quad \beta=101.03^{\circ}, \quad V=$ 2760.8 (16) $\AA^{3}, Z=2, D_{x}=2.681 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$, $\lambda=0.71073 \AA, \mu=13.11 \mathrm{~mm}^{-1}, F(000)=2016, T=$ $193 \mathrm{~K}, R=0.053$ for 3379 reflections and 305 parameters. The structure consists of two crystallographically distinct units. In each of them, a $\mathrm{Te}^{\mathrm{IV}}$ species has a sixfold, nearly octahedral configuration of Br atoms around it. Two of these Br atoms are shared (cis) with a $\mathrm{Te}^{\mathrm{II}}$ atom to which are also attached two molecules of N, N-dimethylselenourea, producing a distorted square-planar configuration of ligands around $\mathrm{Te}^{\mathrm{II}}$. The two crystallographically distinct units are similar, but one of them is coordinated by two $\mathrm{CH}_{3} \mathrm{CN}$ moieties and the other by one $\mathrm{CH}_{3} \mathrm{CN}$ and one $\mathrm{CH}_{3} \mathrm{OH}$ moiety.

Introduction. During the preparation of thin films of Te-Se alloys, a number of products of the reactions between $\mathrm{Te}^{\mathrm{IV}}$ halides and substituted selenoureas have been isolated. One of these, the title compound, is unusual in that both $\mathrm{Te}^{1 \mathrm{~V}}$ and $\mathrm{Te}^{\mathrm{II}}$ are present in the same molecule and share two Br atoms. There

[^0]0108-2701/91/030516-04\$03.00
appear to be no previously reported cases of such structures involving tellurium, although the compound $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}\right]_{2} \mathrm{Se}_{2} \mathrm{Br}_{8}$ contains an anion with $\mathrm{Se}^{\mathrm{II}}$ and $\mathrm{Se}^{\mathrm{IV}}$ sharing two Br atoms, which is remarkably similar to the uncharged species found here (Hauge, Maroy \& Odegard, 1988). The purpose of the present study is to compare the structure of this mixed valence compound with those that contain $\mathrm{Te}^{\mathrm{II}}$ and $\mathrm{Te}^{\mathrm{IV}}$ in more conventional materials and also to compare the structure with that of the analagous selenium compound mentioned above.

Experimental. When TeBr_{4} was reacted with $\mathrm{N}, \mathrm{N}-$ dimethylselenourea (DMSeU) in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, an insoluble product was formed. After separating the solid, refluxing in $\mathrm{CH}_{3} \mathrm{OH}$ and filtering, a few orange crystals of the title compound grew from solution upon standing. A single crystal was selected, attached with Dow stopcock grease to a glass fiber, mounted on a Nicolet $R 3 m / V$ diffractometer and cooled to $T=193 \mathrm{~K}$ with a stream of N_{2} gas. Unitcell dimensions were obtained from measurements of 2θ for 25 reflections, $8 \leq 2 \theta \leq 30^{\circ}$, using graphitemonochromatized Mo $K \alpha$ radiation. Intensities were measured for reflections in the range $4.0 \leq 2 \theta \leq 50^{\circ}$, $-11 \leq h \leq 9, \quad-19 \leq k \leq 0, \quad-20 \leq l \leq 0$, using a (C) 1991 International Union of Crystallography

Wyckoff-type scan with a variable scan speed, 2.00 to $14.65^{\circ} \mathrm{min}^{-1}$ in ω, a fixed scan range, $\Delta \omega=0.60^{\circ}$, and backgrounds obtained with a stationary crystal, stationary counter at the beginning and end of the scan, each for 25% of the total scan time. The intensities of three standard reflections which were measured every 97 reflections remained nearly unchanged throughout data collection. Intensities of 4088 reflections were measured, of which 4079 were independent, and 3379 had $I>1.5 \sigma(I) ; R_{\text {int }}=0.043$. Close to the end of data collection an icing problem occurred, the crystal fell from its mount and its physical dimensions could not be measured. Prior to this, ψ-scan data had been collected and an empirical absorption correction was applied to the data (ellipsoid approximation, min. $T=0.709$, max. $T=0.855$) as well as Lorentz and polarization corrections. The composition of the crystal was originally unknown. The structure was solved by examination of the Patterson function and by the trial-and-error testing of models suggested by it, coupled with electrondensity and least-squares calculations. At first, the space group $P 2_{1} / m$ was selected, but as the outline of the structure developed, it became clear that either the structure was disordered or the space group $P 2_{1}$ was correct, with two independent molecules of (DMSeU$)_{2} \mathrm{TeBr}_{2} \mathrm{TeBr}_{4}$ in the unit cell. The structure refined satisfactorily in $P 2_{1}$, but difference electron density maps revealed the presence of three molecules of $\mathrm{CH}_{3} \mathrm{CN}$ and one molecule of $\mathrm{CH}_{3} \mathrm{OH}$ in the asymmetric unit. Since the crystals had been recrystallized from $\mathrm{CH}_{3} \mathrm{OH}$, it was not surprising to observe it in the crystals.

The unexpected appearance of $\mathrm{CH}_{3} \mathrm{CN}$ was traced back to the use of DMSeU that had been recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$. (An analagous compound that contains $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ has been prepared simply by diffusion between solutions of TeBr_{4} in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and DMSeU in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature.) Least-squares refinements were carried out on the coordinates and temperature factors of all non- H atoms, with Te, Br and Se anisotropic, O, N and C isotropic, on the scale factor and Rogers's η (Rogers, 1981), with the H atoms of the NH_{2} groups placed in idealized positions. Difference electron density maps were calculated and 16 of 36 H atoms in CH_{3} groups were identified and used to obtain positions for all methyl H atoms which were then held fixed in all further refinements. The H atom attached to O was not found. Final refinements (carried out until the change in any parameter was less than 0.01 of its σ) of the scale factor, Rogers's $\eta=0.93$ (10), coordinates and temperature factors of all non-H atoms with Te, Br and Se anisotropic and O, N and C isotropic gave $R=0.053, w R=0.050,3379$ reflections with $I>1 \cdot 5 \sigma(I), 305$ parameters, goodness-offit $=1 \cdot 24$, quantity minimized $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, w^{-1}$

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $2\left[\mathrm{Te}_{2} \mathrm{Br}_{6}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Se}\right)_{2}\right] \cdot 3 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} . \mathrm{CH}_{3} \mathrm{OH}$
$U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
$\mathrm{Te}(1)$	4418 (2)	2500	4991 (1)	25 (1)
$\mathrm{Br}(1)$	5503 (3)	3546 (3)	6089 (2)	39 (1)
$\mathrm{Br}(2)$	5493 (3)	1333 (3)	5960 (2)	44 (1)
$\mathrm{Br}(3)$	6615 (3)	2548 (3)	4325 (2)	41 (1)
$\mathrm{Br}(4)$	2104 (2)	2431 (3)	5645 (1)	39 (1)
$\mathrm{Br}(5)$	3275 (3)	1363 (2)	3826 (2)	37 (1)
$\mathrm{Br}(6)$	3256 (3)	3758 (2)	4010 (2)	37 (1)
$\mathrm{Te}(2)$	720 (2)	2580 (2)	3225 (1)	38 (1)
$\mathrm{Se}(1)$	-937 (3)	3714 (2)	2915 (2)	38 (1)
$\mathrm{Se}(2)$	-975 (3)	1466 (2)	2816 (2)	36 (1)
$\mathrm{Te}(3)$	- -3034 (2)	3714 (2)	-136 (1)	23 (1)
$\mathrm{Br}(7)$	- 5399 (3)	2999 (3)	-111 (2)	39 (1)
$\mathrm{Br}(8)$	- 3428 (3)	4704 (3)	1010 (2)	41 (1)
$\mathrm{Br}(9)$	- 580 (3)	4447 (2)	-125 (2)	37 (1)
$\mathrm{Br}(10)$	-4187 (3)	4707 (2)	-1265 (2)	35 (1)
$\operatorname{Br}(11)$	- 2579 (3)	2663 (3)	-1343 (2)	37 (1)
$\mathrm{Br}(12)$	- 1792 (3)	2658 (2)	1068 (J)	36 (1)
$\mathrm{Te}(4)$	-2 (2)	1891 (2)	-117 (1)	51 (i)
Se(3)	1241 (3)	1502 (3)	-1197 (2)	50 (1)
$\mathrm{Se}(4)$	1845 (3)	1518 (3)	1030 (2)	49 (1)
C(1)	-1138 (26)	4045 (16)	3974 (16)	34 (7)
C(2)	- 1315 (25)	1057 (15)	3823 (15)	26 (6)
C(3)	1793 (22)	2552 (17)	- 1540 (13)	29 (6)
C(4)	2599 (24)	2536 (18)	1336 (14)	37 (6)
$\mathrm{N}(1)$	-2178 (19)	4534 (12)	3996 (11)	24 (5)
N(2)	- 304 (22)	3808 (14)	4595 (13)	41 (6)
N(3)	- 2268 (22)	590 (14)	3834 (13)	34 (6)
N(4)	-380 (21)	1233 (13)	4510 (12)	31 (6)
N(5)	2670 (18)	2565 (14)	-1995 (11)	31 (5)
N(6)	1151 (22)	3223 (14)	- 1345 (12)	36 (6)
N(7)	3809 (21)	2602 (16)	1780 (12)	45 (6)
N(8)	1856 (27)	3203 (17)	1180 (16)	63 (8)
C(5)	-2435 (28)	4818 (17)	4744 (17)	41 (8)
C(6)	-3129 (37)	4802 (24)	3302 (22)	77 (11)
C(7)	- 2555 (32)	220 (20)	4579 (19)	55 (9)
C(8)	- 3289 (29)	396 (18)	3141 (17)	43 (8)
C(9)	3007 (30)	3296 (18)	-2330 (17)	47 (8)
C(10)	3498 (31)	1823 (20)	-2111(19)	57 (9)
C(11)	4719 (31)	1912 (20)	1937 (19)	56 (9)
C(12)	4370 (42)	3401 (26)	2036 (25)	92 (14)
$\mathrm{N}(9)$	9816 (24)	4265 (14)	6379 (15)	44 (6)
C(13)	9294 (25)	4448 (16)	6856 (16)	32 (7)
C(14)	8599 (28)	4626 (19)	7531 (17)	48 (8)
$\mathrm{N}(10)$	9819 (35)	882 (21)	6336 (21)	94 (11)
C(15)	9332 (30)	1438 (21)	6493 (18)	51 (8)
C(16)	8906 (34)	2267 (21)	6661 (20)	70 (10)
$N(11)$	1918 (25)	4937 (15)	8722 (15)	52 (7)
C(17)	2548 (33)	5313 (21)	9198 (20)	57 (9)
C(18)	3350 (37)	5710 (24)	9884 (23)	80 (12)
$\mathrm{O}(1)$	7950 (33)	-135 (21)	8541 (20)	133 (12)
C(19)	7558 (37)	325 (25)	7843 (25)	86 (12)

$=\sigma^{2}(F)+0.0005 F^{2}$ with $\sigma^{2}(F)$ estimated from $\sigma(I)$. For all 4079 data, $R=0.069, w R=0.052$, and the residuals on the final difference map varied from $1 \cdot 1$ to $-1.7 \mathrm{e} \AA^{-3}$. Calculations were performed with SHELXTL-Plus (Sheldrick, 1987). Scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The refined coordinates and equivalent isotropic temperature factors for the structure are listed in Table 1.*

[^1]Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $2\left[\mathrm{Te}_{2} \mathrm{Br}_{6}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Se}\right)_{2}\right] \cdot 3 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} . \mathrm{CH}_{3} \mathrm{OH}$

$\mathrm{Te}(1)-\mathrm{Br}(1) \quad 2$	2.626 (4)	$\mathrm{Te}(1)-\mathrm{Br}(2) \quad 2.636$	2.636 (4)
$\mathrm{Te}(1)-\mathrm{Br}(3) \quad 2$	2.650 (3)	$\mathrm{Te}(1)-\mathrm{Br}(4) \quad 2.7$	2.747 (3)
$\mathrm{Te}(1)-\mathrm{Br}(5) \quad 2$	2.814 (4)	$\mathrm{Te}(1)-\mathrm{Br}(6) \quad 2.7$	2.785 (4)
$\mathrm{Te}(2)-\mathrm{Se}(1) \quad 2$	2.498 (4)	$\mathrm{Te}(2)-\mathrm{Se}(2) \quad 2.5$	2.517 (4)
$\mathrm{Se}(1)-\mathrm{C}(1) \quad 1$.	1.922 (28)	$\mathrm{Se}(2)-\mathrm{C}(2) \quad 1.92$	1.925 (26)
$\mathrm{Te}(3)-\mathrm{Br}(7) \quad 2$.	2.651 (4)	$\mathrm{Te}(3)-\operatorname{Br}(8) \quad 2.63$	2.633 (4)
$\mathrm{Te}(3)-\mathrm{Br}(9) \quad 2.7$	2.732 (4)	$\mathrm{Te}(3)-\mathrm{Br}(10) \quad 2.6$	2.621 (4)
$\mathrm{Te}(3)-\mathrm{Br}(11) \quad 2$.	2.794 (4)	$\mathrm{Te}(3)-\mathrm{Br}(12) \quad 2.7$	2.796 (4)
$\mathrm{Te}(4)-\mathrm{Se}(3) \quad 2$.	2.483 (5)	$\mathrm{Te}(4)-\mathrm{Se}(4) \quad 2.4$	2.486 (4)
$\mathrm{Se}(3)-\mathrm{C}(3) \quad 1$.	1.956 (28)	$\mathrm{Se}(4)-\mathrm{C}(4) \quad 1.886$	1.886 (29)
$\mathrm{C}(1)-\mathrm{N}(1) \quad 1$.	$1 \cdot 324$ (33)	$\mathrm{C}(1)-\mathrm{N}(2) \quad 1.273$	1.273 (32)
$\mathrm{C}(2)-\mathrm{N}(3) \quad 1$.	$1-232$ (34)	$\mathrm{C}(2)-\mathrm{N}(4) \quad 1.37$	1.376 (30)
$\mathrm{C}(3)-\mathrm{N}(5) \quad 1.2$	$1 \cdot 271$ (32)	$\mathrm{C}(3)-\mathrm{N}(6) \quad 1.36$	$1 \cdot 360$ (35)
$\mathrm{C}(4)-\mathrm{N}(7) \quad 1$.	$1 \cdot 299$ (29)	$\mathrm{C}(4)-\mathrm{N}(8) \quad 1.333$	1.333 (40)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.421 (36)	$\mathrm{N}(1)-\mathrm{C}(6) \quad 1.434$	1.434 (39)
$\mathrm{N}(3)-\mathrm{C}(7) \quad 1$	1.479 (41)	$\mathrm{N}(3)-\mathrm{C}(8) \quad 1.436$	1.436 (33)
$\mathrm{N}(5)-\mathrm{C}(9) \quad 1$.	1.411 (38)	$\mathrm{N}(5)-\mathrm{C}(10) \quad 1.52$. 520 (39)
$\mathrm{N}(7)-\mathrm{C}(11)$	1.457 (40)	$\mathrm{N}(7)-\mathrm{C}(12) \quad 1.4$	1.476 (49)
$\mathrm{N}(9)-\mathrm{C}(13)$	1.085 (28)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.4$	1.475 (42)
$\mathrm{N}(10)-\mathrm{C}(15)$	$1 \cdot 102$ (49)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1.4$.489 (49)
$\mathrm{N}(11)-\mathrm{C}(17) \quad 1$.	$1 \cdot 115$ (39)	$\mathrm{C}(17)-\mathrm{C}(18) \quad 1.4$	-439 (47)
$\mathrm{O}(1)-\mathrm{C}(19) \quad 1$	1.400 (52)		
$\mathrm{Br}(1)-\mathrm{Te}(1)-\mathrm{Br}(2)$	89.2 (1)	$\mathrm{Br}(1)-\mathrm{Te}(1)-\mathrm{Br}(3)$	91.1 (1)
$\mathrm{Br}(2)-\mathrm{Te}(1)-\mathrm{Br}(3)$	90.9 (1)	$\mathrm{Br}(1)-\mathrm{Te}(1)-\mathrm{Br}(4)$	90.4 (1)
$\mathrm{Br}(2)-\mathrm{Te}(1)-\mathrm{Br}(4)$	89.5 (1)	$\mathrm{Br}(3)-\mathrm{Te}(1)-\mathrm{Br}(4)$	178.5 (1)
$\mathrm{Br}(1)-\mathrm{Te}(1)-\mathrm{Br}(5)$	179.3 (1)	$\mathrm{Br}(2)-\mathrm{Te}(1)-\mathrm{Br}(5)$	$90 \cdot 1$ (1)
$\mathrm{Br}(3)-\mathrm{Te}(1)-\mathrm{Br}(5)$	88.8 (1)	$\mathrm{Br}(4)-\mathrm{Te}(1)-\mathrm{Br}(5)$	89.8 (1)
$\mathrm{Br}(1)-\mathrm{Te}(1)-\mathrm{Br}(6)$	89.5 (1)	$\mathrm{Br}(2)-\mathrm{Te}(1)-\mathrm{Br}(6)$	$178 \cdot 1$ (1)
$\mathrm{Br}(3)-\mathrm{Te}(1)-\mathrm{Br}(6)$	90.4 (1)	$\mathrm{Br}(4)-\mathrm{Te}(1)-\mathrm{Br}(6)$	89.2 (1)
$\mathrm{Br}(5)-\mathrm{Te}(1)-\mathrm{Br}(6)$	91.3 (1)	$\mathrm{Se}(1)-\mathrm{Te}(2)-\mathrm{Se}(2)$	96.7 (1)
$\mathrm{Te}(2)-\mathrm{Se}(1)-\mathrm{C}(1)$	101.8 (8)	$\mathrm{Te}(2)-\mathrm{Se}(2)-\mathrm{C}(2)$	$103 \cdot 9$ (7)
$\mathrm{Br}(7)-\mathrm{Te}(3)-\mathrm{Br}(8)$	90.6 (1)	$\mathrm{Br}(7)-\mathrm{Te}(3)-\mathrm{Br}(9)$	178.7 (1)
$\mathrm{Br}(8)-\mathrm{Te}(3)-\mathrm{Br}(9)$	88.6 (1)	$\mathrm{Br}(7)-\mathrm{Te}(3)-\mathrm{Br}(10)$	91.6 (1)
$\mathrm{Br}(8)-\mathrm{Te}(3)-\mathrm{Br}(10)$	92.1 (1)	$\mathrm{Br}(9)-\mathrm{Te}(3)-\mathrm{Br}(10)$	89.5 (1)
$\mathrm{Br}(7)-\mathrm{Te}(3)-\mathrm{Br}(11)$	90.0 (1)	$\mathrm{Br}(8)-\mathrm{Te}(3)-\mathrm{Br}(11)$	$179 \cdot 2$ (1)
$\mathrm{Br}(9)-\mathrm{Te}(3)-\mathrm{Br}(11)$	90.8 (1)	$\mathrm{Br}(10)-\mathrm{Te}(3)-\mathrm{Br}(11)$) 88.4 (1)
$\mathrm{Br}(7)-\mathrm{Te}(3)-\mathrm{Br}(12)$	88.7 (1)	$\mathrm{Br}(8)-\mathrm{Te}(3)-\mathrm{Br}(12)$	88.0 (1)
$\mathrm{Br}(9)-\mathrm{Te}(3)-\mathrm{Br}(12)$	90.3 (1)	$\mathrm{Br}(10)-\mathrm{Te}(3)-\mathrm{Br}(12)$) 179.7 (1)
$\mathrm{Br}(11)-\mathrm{Te}(3)-\mathrm{Br}(12)$) $\quad 91.6$ (1)	$\mathrm{Se}(3)-\mathrm{Te}(4)-\mathrm{Se}(4)$	96.3 (1)
$\mathrm{Te}(4)-\mathrm{Se}(3)-\mathrm{C}(3)$	$101 \cdot 2$ (8)	$\mathrm{Te}(4)-\mathrm{Se}(4)-\mathrm{C}(4)$	$100 \cdot 8$ (7)
$\mathrm{Se}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$115 \cdot 2$ (17)	$\mathrm{Se}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	120.9 (21)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	123.9 (25)	$\mathrm{Se}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	$120 \cdot 3$ (18)
$\mathrm{Se}(2)-\mathrm{C}(2)-\mathrm{N}(4)$	117.9 (18)	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{N}(4)$	121.4 (24)
$\mathrm{Se}(3)-\mathrm{C}(3)-\mathrm{N}(5)$	117.4 (21)	$\mathrm{Se}(3)-\mathrm{C}(3)-\mathrm{N}(6)$	119.4 (18)
$\mathrm{N}(5)-\mathrm{C}(3)-\mathrm{N}(6)$	$122 \cdot 9$ (25)	$\mathrm{Se}(4)-\mathrm{C}(4)-\mathrm{N}(7)$	$120 \cdot 9$ (22)
$\mathrm{Se}(4)-\mathrm{C}(4)-\mathrm{N}(8)$	$121 \cdot 1$ (18)	$\mathrm{N}(7)-\mathrm{C}(4)-\mathrm{N}(8)$	117.6 (27)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	120.5 (20)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	124.5 (24)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(6)$	115.0 (23)	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(7)$	$123 \cdot 5$ (22)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(8)$	123.9 (24)	$\mathrm{C}(7)-\mathrm{N}(3)-\mathrm{C}(8)$	112.3 (22)
$\mathrm{C}(3)-\mathrm{N}(5)-\mathrm{C}(9)$	$120 \cdot 2$ (25)	$\mathrm{C}(3)-\mathrm{N}(5)-\mathrm{C}(10)$	121.2 (24)
$\mathrm{C}(9)-\mathrm{N}(5)-\mathrm{C}(10)$	118.2 (22)	$\mathrm{C}(4)-\mathrm{N}(7)-\mathrm{C}(11)$	121.0 (26)
$\mathrm{C}(4)-\mathrm{N}(7)-\mathrm{C}(13)$	$120 \cdot 3$ (27)	$\mathrm{C}(11)-\mathrm{N}(7)-\mathrm{C}(12)$	118.0 (24)
$\mathrm{N}(9)-\mathrm{C}(13)-\mathrm{C}(14)$	$175 \cdot 1$ (30)	$\mathrm{N}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	$169 \cdot 0$ (37)
$\mathrm{N}(11)-\mathrm{C}(17)-\mathrm{C}(18)$	$172 \cdot 3$ (37)		

Discussion. Bond distances and bond angles are presented in Table 2. Fig. $1(a, b)$ presents stereoviews of portions of the structure.
(a) N,N-Dimethylselenourea (DMSeU). Each of the four independent molecules of DMSeU is approximately planar and coordinated through Se to $\mathrm{Te}^{\mathrm{II}}$. The largest average deviation from planarity, $0.072 \AA$, was found for $[\operatorname{Se}(3), \mathrm{C}(3), \mathrm{N}(5), \mathrm{N}(6), \mathrm{C}(9)$, $\mathrm{C}(10)$], and the smallest, $0.007 \AA$, for $[\mathrm{Se}(1), \mathrm{C}(1)$, $\mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(5), \mathrm{C}(6)]$. Within the DMSeU units, the average bond distances are $\mathrm{Se}-\mathrm{C}=$ 1.923 (14) $\AA, \mathrm{C}-\mathrm{NH}_{2}=1.336(24) \AA, \mathrm{C}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ $=1.283$ (19) $\AA, \quad \mathrm{N}-\mathrm{CH}_{3}=1.451$ (13) \AA. The long $\mathrm{Se}-\mathrm{C}$ distance, with Se coordinated to $\mathrm{Te}^{\mathrm{II}}$, fits well with other reported values. In structures without such coordination such as N-phenyl- N^{\prime}-benzoylselenourea (Hope, 1965), $\mathrm{C}-\mathrm{Se}=1.82 \AA$, and tris-
(acetylacetonato)cobalt(III)selenourea (Wright \& Meyers, 1980), $\mathrm{C}-\mathrm{Se}=1.852 \AA$. In contrast, with tetramethylselenourea coordinated to $\mathrm{Te}^{\mathrm{II}}$, longer $\mathrm{Se}-\mathrm{C}$ distances have been found: $1.872 \AA$ by Foss, Maartman-Moe \& Maroy (1986) and $1.924 \AA$ by Eide, Foss, Maartman-Moe, Maberg \& Scheie (1987). The $\mathrm{C}-\mathrm{N}$ distances seem to be normal.
(b) $\mathrm{Te}^{\mathrm{IV}}$ and $\mathrm{Te}^{\mathrm{II}}$. Sixfold, approximately octahedral coordination is frequently observed for $\mathrm{Te}^{\mathrm{IV}}$ (Mangion, Zingaro \& Meyers, 1975), with $\mathrm{Te}^{\mathrm{IV}}-\mathrm{Br}$ $\simeq 2.70 \AA$, as in $\left[\mathrm{TeBr}_{6}\right]^{2-}$. In the present structure, $\mathrm{Te}(1)$ and $\mathrm{Te}(3)$ are six coordinated, with average $\mathrm{Te}-\mathrm{Br}=2.707 \AA$. These bonds divide naturally into three classes: (1) long bonds with Br shared between $\mathrm{Te}^{\mathrm{IV}}$ and $\mathrm{Te}^{\mathrm{II}}, \mathrm{Te}^{\mathrm{IV}}-\mathrm{Br}=2.796 \AA$; (2) short bonds that are trans to these, $\mathrm{Te}^{\mathrm{IV}}-\mathrm{Br}=2.636(5) \AA$; and (3) the remaining pair of bonds that vary from $\mathrm{Te}(3)-\operatorname{Br}(10)=2 \cdot 621(4) \AA$ to $\mathrm{Te}(1)-\mathrm{Br}(4)=$ 2.747 (3) \AA. Fourfold, approximately planar coordination is frequently observed for $\mathrm{Te}^{\mathrm{II}}$ (Husebye, 1983, 1988) and in this structure $\mathrm{Te}(2)$ and $\mathrm{Te}(4)$ are each coordinated by two Se atoms and two Br atoms, arranged in planar cis configurations. The average distance $\mathrm{Te}^{\mathrm{II}}-\mathrm{Se}$ is equal to $2 \cdot 496$ (8) \AA, which is slightly shorter than the sum of covalent radii, $2.51 \AA$, and $\mathrm{Te}^{\mathrm{II} \ldots} \mathrm{Br}$ is equal to 3.24 (3) \AA, which is much longer than the sum of covalent radii,

(a)

(b)

Fig. 1(a). Stereoview of (DMSeU) Te $_{2} \mathrm{Br}_{6}$ complex coordinated by two molecules of $\mathrm{CH}_{3} \mathrm{CN}$. (Thermal ellipsoids at 0.50 probability.) (b) Stereoview of (DMSeU$)_{2} \mathrm{Te}_{2} \mathrm{Br}_{6}$ complex coordinated by one molecule of $\mathrm{CH}_{3} \mathrm{CN}$ and one molecule of $\mathrm{CH}_{3} \mathrm{OH}$. (Thermal ellipsoids at 0.50 probability.)
$2.51 \AA$, and much shorter than the sum of van der Waals radii, $4 \cdot 15 \AA$ (Pauling, 1960).

The structure of this entire group of atoms, namely $\mathrm{Se}_{2} \mathrm{Te}^{\mathrm{II}} \mathrm{Br}_{2} \mathrm{Te}^{\mathrm{IV}} \mathrm{Br}_{4}$, is very similar to that found for the unit $\mathrm{Br}_{2} \mathrm{Se}^{\mathrm{II}} \quad \mathrm{Br}_{2} \mathrm{Se}^{\text {IV }} \quad \mathrm{Br}_{4}$ in $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}_{2} \mathrm{Se}_{2} \mathrm{Br}_{8}\right.$ (Hauge, Maroy \& Odegard, 1988). In that structure, the terminal $\mathrm{Se}^{\mathrm{II}}-\mathrm{Br}$ bond lengths are $2 \cdot 461$ (2) and 2.427 (2) \AA, while the bridging Se ${ }^{\mathrm{II}}-\mathrm{Br}$ bond lengths are 2.993 (2) and $3.010 \AA$; the bridging $\mathrm{Se}^{\mathrm{IV}}-\mathrm{Br}$ bond distances are 2.748 (2) and 2.720 (2) \AA, the bonds trans to them are 2.459 (2) and 2.442 (2) \AA and the third pair of $\mathrm{Se}^{\mathrm{IV}}-\mathrm{Br}$ bond distances is 2.522 (2) and 2.600 (2) \AA. For Se and Br , the sum of the covalent radii is $2.31 \AA$ and the sum of the van der Waals radii is $3.95 \AA$ (Pauling, 1960). The dihedral angle between the $\mathrm{Se}^{\mathrm{II}} \mathrm{Br}_{4}$ plane and the equatorial $\mathrm{Se}^{\mathrm{IV}} \mathrm{Br}_{4}$ plane is 57°. The corresponding angles in the present structure are 58° for the planes that share $\operatorname{Br}(5)$ and $\operatorname{Br}(6)$, and 37° for the planes that share $\operatorname{Br}(11)$ and $\operatorname{Br}(12)$. The various DMSeU planes make dihedral angles with their $\mathrm{Se}_{2^{-}}$ $\mathrm{Te}^{\mathrm{II}} \mathrm{Br}_{2}$ planes that range from $68 \cdot 0$ to $71 \cdot 4^{\circ}$.
(c) $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{OH}$. Four molecules of solvation were found in the structure, three $\mathrm{CH}_{3} \mathrm{CN}$ and one $\mathrm{CH}_{3} \mathrm{OH}$. For $\mathrm{CH}_{3} \mathrm{CN}$, the average distances and angles are $\mathrm{C}-\mathrm{C}=1.10$ (3) $\AA, \quad \mathrm{C}-\mathrm{N}=1.47$ (2) \AA and $\mathrm{C}-\mathrm{C}-\mathrm{N}=173(2)^{\circ}$ and for $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}-\mathrm{O}=$ $1 \cdot 40$ (5) \AA. All of these values appear to be normal. Each of the four solvent molecules has one close contact with one of the four available H atoms of the NH_{2} groups of DMSeU. The $\mathrm{N} \cdots \mathrm{H}$ contacts from $\mathrm{CH}_{3} \mathrm{CN}$ vary from $2 \cdot 12$ to $2 \cdot 26 \AA$, while the angles
$\mathrm{C}-\mathrm{N} \cdots \mathrm{H}$ vary from 99 to 139°. The contact $\mathrm{Ol} \cdots \mathrm{H} 8 E a=1.99 \AA$ and $\mathrm{C} 19-\mathrm{Ol} \cdots \mathrm{H} 8 E a=128^{\circ}$. All of these distances are considerably shorter than van der Waals contacts, and may be hydrogen bonds. The angles $\mathrm{N} \cdots \mathrm{H}-\mathrm{N}$ vary from 151 to 167° and $\mathrm{N} 8-\mathrm{H} 8 E a \cdots \mathrm{Ol}=150^{\circ}$, all values that deviate considerably from 180°.

The authors wish to express their appreciation to the Robert A. Welch Foundation of Houston, Texas, for its financial assistance in support of this investigation.

References

Eide, J., Foss, O., Maartman-Moe, O., Maberg, O. \& Scheie, A. (1987). Acta Chem. Scand. Ser. A, 41, 67-76.

Foss, O., Mafrtman-Moe, K. \& Maroy, K. (1986). Acta Chem. Scand. Ser. A, 40, 685-694.
Hauge, S., Maroy, K. \& Odegard, T. (1988). Acta Chem. Scand. Ser. $A, 42,56-60$.
Hope, H. (1965). Acta Cryst. 18, 259-264.
Husebye, S. (1983). Proc. Fourth Int. Conf. Selenium and Tellurium, edited by F. J. Berry \& W. R. McWhinnie, pp. 298-378. Univ. of Aston, Birmingham, England.
Husebye, S. (1988). Phosphorus Sulfur, 38, 271-280.
Mangion, M. M., Zingaro, R. A. \& Meyers, E. A. (1975). Chem. Scr. 8A, 45-50.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Rogers, D. (1981). Acta Cryst. A37, 734-741.
Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet $R 3 \mathrm{~m} / V$ crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Wright, W. B. \& Meyers, E. A. (1980). Cryst. Struct. Commun. 9, 1173-1180.

Structure of Bis(2,2'-bipyridine)dichlororhodium(III) Chloride Dihydrate

By Pascual Lahuerta,* Julio Latorre and Ramón Martínez-Máñez
Departamento de Quimica Inorgánica, Facultad de Química de la Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain
and Santiago García-Granda* and Fermín Gómez-Beltrán
Departamento de Química Física y Analítica, Facultad de Quimica, Universidad de Oviedo, Julian Clavería s/n, 33006 Oviedo, Spain

(Received 12 May 1990; accepted 28 August 1990)

[^2]0108-2701/91/030519-04\$03.00
$90.668(4)^{\circ}, \quad V=1106 \cdot 0(1) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.67 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$ radiation (graphite crystal monochromator, $\lambda=0.71069 \AA), \quad \mu=11.49 \mathrm{~cm}^{-1}$, $F(000)=560, T=293$ K. Final $R=0.052$ for 3633 independent observed reflections and 325 variables.

[^0]: * To whom inquiries should be directed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, bond lengths and angles involving H atoms and least-squares-planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53520 (25 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: Abstract. $\left[\mathrm{RhCl}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=557 \cdot 7$, triclinic, $\quad P \overline{1}, \quad a=12.9712(5), \quad b=12.402(1), \quad c=$ 6.9998 (4) $\AA, \quad \alpha=100 \cdot 123$ (5),$\quad \beta=93 \cdot 607$ (3), $\quad \gamma=$

 * Authors to whom correspondence should be addressed.

